Hydromag Newsletter

HYDROMAG Association's newsfeed


(from Tom Weier, Dresden, Germany)


The joint 14th World Congress in Computational Mechanics and ECCOMAS Congress is expected to be one of the largest computational mechanics and applied mathematics events ever organized with an expected participation from all parts of the globe, representing multiple sectors, academia, industry and government institutions.

Through the organization of minisymposia, it will both cover the latest developments in all aspects of computational mechanics, computational fluid dynamics and applied mathematics in conjunction with industrial needs as well as emerging ones. This congress shall fully engage computational mechanics in the XXI century.

A mini-symposium on fluid dynamics of liquid metal batteries (LMB) will be organized in the framework of the ECCOMAS 2020 congress to be held on July 19-24, 2020 in Paris. The proposed minisymposium aims to support the trending interest in the topic of LMBs, to offer a platform for discussion, and to facilitate future collaborations. While the focus shall be on fluid dynamics, lectures on other aspects of LMBs and related devices (e.g., aluminum reduction cells) will be equally welcome and considered to be in the scope of the minisymposium. Topics to be addressed include: mixing and mass transfer, natural convection, magnetohydrodynamic instabilities, electro-vortex flows, electrochemistry of LMBs, scale-up, and grid integration as well as stack design and heat transfer.

Abstracts can be submitted to the conference website after September 15, 2019. Please contact the mini-symposium organizers, Tom Weier, Wietze Herreman and Oleg Zikanov if you have any questions.





PostDoc position in Computational MHD at UCLA

PostDoc position in Computational MHD at UCLA


from: Sergey Smolentsev


Opening: Postdoctoral position in Computational MHD/LM blanket design and analysis

Location: University of California at Los Angeles, USA, Dept. of Mechanical and Aerospace Engineering

Duration: 1 year with possible extension to 2 or 3 years

Starting date: As soon as possible

Application deadline: June 30, 2019

Requirements to the candidate: experience of computing LM MHD flows for fusion blanket applications with one or more CFD codes: CFX, FLUENT, OPENFOAM, COMSOL or others

Contact: Dr. Sergey Smolentsev (sergey@fusion.ucla.edu)

Issue No. 2, 2019



  1. Postdoctoral Research Fellow in MHD (ETH ZURICH)
  2. Postdoctoral Research Fellow on Inertial particles and Turbulence (PARIS)
  3. PHD POSITION AT HZDR (deadline 30/04/2019)
  4. MHD Modelling School 2019
  5. NEW BOOK: Self-Exciting Fluid Dynamos

I. Postdoctoral Research Fellow in Magnetohydrodynamics (100%)


(from Andy Jackson, ETH Zürich, Switzerland)

The Earth and Planetary Magnetism Group at the Institute of Geophysics at ETH Zürich studies planetary magnetism with a strong focus on the Earth. Part of our group is devoted to the mechanisms underlying the generation and evolution of the magnetic field of a planet following theoretical, numerical and experimental approaches.

Postdoctoral Research Fellow in Magnetohydrodynamics (100%)

The position will develop theory and algorithms for the solution of a new class of self-consistent solution to the governing equations of dynamo theory. Depending on background and experience, the fellow will work on one of the following topics: (i) Application of optimal control to the inviscid fluid dynamical equations, together with analytic treatment of viscous effects (ii) Implicit methods of time-stepping (iii) Development of algorithms for anelastic treatment of giant planets. (iv) Understanding geomagnetic reversals. The project is funded by the ERC and the position is for 2 years in the first instance, with the possibility of renewal.

The successful candidate will have a background in mathematics or physical sciences and be expected to (i) carry out his/her own research projects, (ii) co-supervise undergraduate- and graduate-level thesis projects, and (iii) possibly contribute to the teaching of general geophysics courses. We seek a good team-player who can join a small team of about 10 others. Evidence of high performance computing experience is required. The working language of the department is English. At the time of the appointment, the successful candidate must have a doctoral degree in geophysics or a related subject.

We look forward to receiving your online application including the following documents: a full CV, short statement of experience and research interests. Please note that we exclusively accept applications submitted through our online application portal. Applications via email or postal services will not be considered.

For further information about the group, please visit our website: http://www.epm.ethz.ch. For further information about the position, please contact Prof Andrew Jackson by e-mail, ajackson@ethz.ch (no applications).

Applications should be made online at

Browser: https://apply.refline.ch/845721/7052/pub/1/index.html

Mobile: https://m.refline.ch/845721/7052/pub/1/index.html


ETH Zürich

Institut für Geophysik

Sonneggstrasse 5

CH-8092 Zürich


+41 44 633 7349 (work)

+41 79 639 0827 (Mob)

II. Postdoctoral Research Fellow on Inertial particles and Turbulence (100%)


(from Romain Monchaux, France )

Experimental Post-Doc position: Settling of aerosol in turbulent flows (1/10/2019)


Contact : Romain Monchaux (monchaux(at)ensta.fr)

Duration : 1 to 2 years from fall

Application deadline: 30/06/2019

Advert: http://perso.ensta-paristech.fr/~monchaux/2019_ENSTA_Particle_PostDoc.pdf



(from Andre Giesecke, HZDR, Germany )

The Institute of Fluid Dynamics at Helmholtz-Zentrum Dresden-Rossendorf (HZDR, https://www.hzdr.de) invites for applications for a PhD position in the field of experimental fluid dynamics.

The research tasks involve experiments on precessing fluid flows and are essential for the preparation of the large scale dynamo currently under construction at HZDR.

The PhD student will be responsible for running regular experiments at the water precession experiment and will conduct he related measurements. The tasks include an upgrade of the experiment and the involvement in the preparation of the forthcoming dynamo experiments. Intensive cooperation is mandatory with the project partners at Ruhr-Universitaet Bochum (Prof. R. Grauer), where related numerical models are conducted.

The position will be available from 1 July 2019. The employment contract is limited to three years.


  • Diploma or M.Sc in physics/mechanical engineering or related subjects with very good marks and a profound background in fluid dynamics and/or magnetohydrodynamics
  • experience in the operation of experiments, preferably in the field of fluid dynamics
  • willingness for close cooperation with project partners from Universitaet Bochum who will conduct related numerical studies (includes travel to Bochum 1-2 times a year)
  • scientific approach to research questions, self-dependent working style and excellent written and oral communication skills in English


  • high scientific professional networking as well as scientific excellence
  • internationality and diversity
  • interesting and diverse tasks, flexible working hours, salary based on the collective agreement TVöD-Bund
  • equality of opportunity and family-friendly structures, corporate health management
  • attractive work and research terms in a highly motivated team

Kindly submit your completed application (including cover letter, CV, diplomas/transcripts, etc.) by 30 April 2019 online via https://www.hzdr.de/db/Cms?pNid=490&pOid=57754&pContLang=en

Andre Giesecke

Helmholtz-Zentrum Dresden-Rossendorf

Institute of Fluid Dynamics — Magnetohydrodynamics

Tel.: +49-351-260 2227.



(from Andris Jakovics, Latvia)

October 14-18 2019

University of Latvia

Riga, Latvia

MHD Modelling PhD-School is a practical hands-on course on simulation of complex liquid metal magnetohydrodynamics processes. The main goal of participants will be to learn to work with open-source software, modifying code and applying it to specific systems with liquid metal flow in electromagnetic field.

The main topics are:

  • Electromagnetic mixing and pumping;
  • Electromagnetic semi-levitation and free surface dynamics;
  • Electrovortical flows;
  • Bubbly flows in magnetic field.

The course has three parts:

  • lectures covering topics from modern experimental techniques to promising MHD applications, as well as introduction to simulation tools and methods;
  • numerical modelling of MHD phenomena using both commercial (ANSYS) and open-source (OpenFOAM, ElmerFEM, getDP, EOF-Library) software;
  • laboratory experiments for demonstration and numerical model validation.

After the introductory lectures participants will be assigned small projects within the abovementioned topics and will present the results at the end of the course.


Laboratory for mathematical modelling of environmental and technological processes, University of Latvia (Dr. Andris Jakovics, andris.jakovics@lu.lv)

Institute of Electrotechnology, Leibniz University of Hannover (Prof. Bernard Nacke, nacke@etp.uni-hannover.de)


More info: http://www.modlab.lv

Participation fee: 150 EUR (till 20. July), 250 EUR (regular)

Online registration: http://ej.uz/MHD2019

V. NEW BOOK: Self-Exciting Fluid Dynamos


(by Keith Moffat & Emmanuel Dormy)

Exploring the origins and evolution of magnetic fields in planets, stars and galaxies, this book gives a basic introduction to magnetohydrodynamics and surveys the observational data, with particular focus on geomagnetism and solar magnetism. Pioneering laboratory experiments that seek to replicate particular aspects of fluid dynamo action are also described. The authors provide a complete treatment of laminar dynamo theory, and of the mean-field electrodynamics that incorporates the effects of random waves and turbulence. Both dynamo theory and its counterpart, the theory of magnetic relaxation, are covered. Topological constraints associated with conservation of magnetic helicity are thoroughly explored and major challenges are addressed in areas such as fast-dynamo theory, accretion-disc dynamo theory and the theory of magnetostrophic turbulence. The book is aimed at graduate-level students in mathematics, physics, Earth sciences and astrophysics, and will be a valuable resource for researchers at all levels.

Book website.




will be issued in the middle of August, 2019. Please send information you wish to be included into this issue to


not later than 15 of August 2019. If you have an urgent announcement, we can publish at http://hydromag.eu between the issues.

Alex Pedcenko
Coventry University
Priory Street Coventry
CV1 5FB United Kingdom
Tel: +44(0)24-77658974
e-mail: a.pedcenko(at)coventry.ac.uk

Research Fellow position in theoretical fluid mechanics at Coventry University (UK)

Coventry University

Location: Coventry Placed On: 2nd August 2019
Salary: £32,243 to £40,802 per annum Closes: 2nd September 2019
Hours: Full Time Job Ref: REQ007193
Contract Type: Permanent

A Research Fellow position in theoretical fluid mechanics is offered at Coventry University (UK). The project concerns convection under a magnetic field in the so called “tangent cylinder” region of the Earth’s core. Much of the mystery surrounding the Earth’s dynamics (its magnetic field, plate tectonics) lies in the nature of the convective patterns within the Earth’s liquid core, and in particular in the region called the “Tangent Cylinder”. What are the possible convective states under the combined influence of the Earth’s rotation and magnetic field, and how erratic are they? This study is part of a theoretical and experimental research program funded by the prestigious Leverhulme Trust (http://www.leverhulme.ac.uk), that aims at answering these questions. The purpose of this thesis is to theoretically predict the possible nonlinear convective states for the first time. We will then evaluate which of these states are mostly likely to underpin the Earth’s core convection.

The Research Fellow will conduct the theoretical and numerical analysis of the problem under the joint supervision of Prof. Alban Pothérat (http://users.complexity-coventry.org/~potherat/index.html) and Dr Chris Pringle.  The study will seek the possible structure of convection by means of advanced stability theory and branch tracking method, to unveil the possible states. In the frame of the research programme, the work is purely theoretical/numerical and will be conducted in collaboration with an experimental study that will seek to reproduce and visualise these non-linear states in an experimental model of the Earth Core.

Successful candidates are expected to hold a PhD in fluid mechanics or a related discipline and to have demonstrated excellent abilities in mathematics and programming.

The successful candidate will be part the vibrant team of internationally recognised academics and PhD students forming the fluid dynamics group within the Applied Mathematics Research Centre, whose work has been ranked at 83% world-class at the UK’ latest Research Excellence Framework in 2014. This unit is part of the Fluid and Complex Systems Research Centre, and specialises in theoretical and experimental fluid mechanics. It is especially renowned for its work on magnetohydrodynamics (MHD), turbulence, stability and geophysical flows. The group closely collaborates with partner groups in world-leading institutions in Australia, China, France, Germany and the UK.

Informal enquiries are welcome: please forward a CV and academic records to Prof. Alban Pothérat (alban.potherat@coventry.ac.uk).

Refs.:: Laboratory model for the convective patterns in the Tangent Cylinder of the Earth core (Aujogue, Pothérat, Sreenivasan & Debray, 2018, Journal of Fluid Mechanics)

Apply Online



(From Andrew Kao, UK)

PhD Scholarship: Energy Saving Induction Melting by Electromagnetic Containment


Location:                                 Computational Science and Engineering Group, University of Greenwich, Old Royal Naval College, Park Row, London, SE10 9LS

Duration:                                Bursary available for 3 years. Year 1: £15,009, Years 2 and 3: in line with RCUK rate

Starting date:                        1 September, 2019

Application Deadline:           10 July, 2019

Further information:             https://www.gre.ac.uk/research/study/research-studentships-and-scholarships

Contact:                                  Dr Andrew Kao (a.kao@gre.ac.uk)



Kind regards,

Andrew Kao